

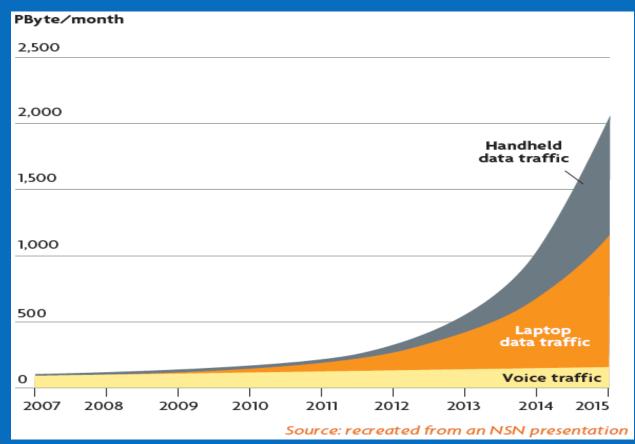
Broadband Wireless Landscape

Rath Vannithamby, Ph.D. Intel Corporation

> Globecom'10 Dec. 06, 2010

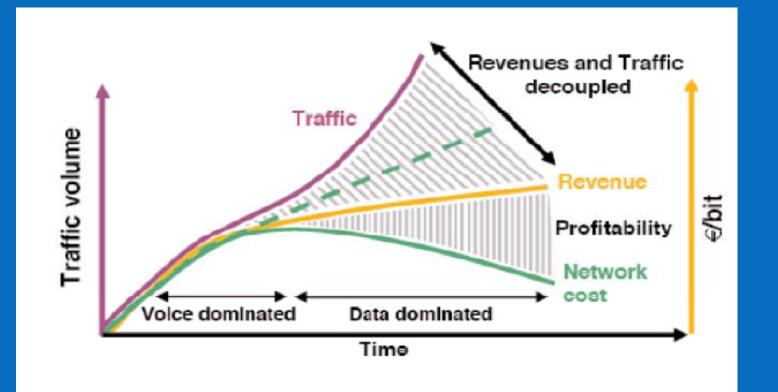
Outline

- Motivation for 4G
- Overview and status of 4G
- Advances in 4G Technologies
- Future Research Directions


Explosive Growth in Mobile Internet Devices, Applications, and Traffic

+Logos and trademarks belong to the other entities ++ These are examples of applications & services

What Is Happening in the Marketplace?



- Broadband traffic is growing exponentially with introduction of:
 - new devices
 - Larger screen devices

Challenge – Lower Revenue Per Bit

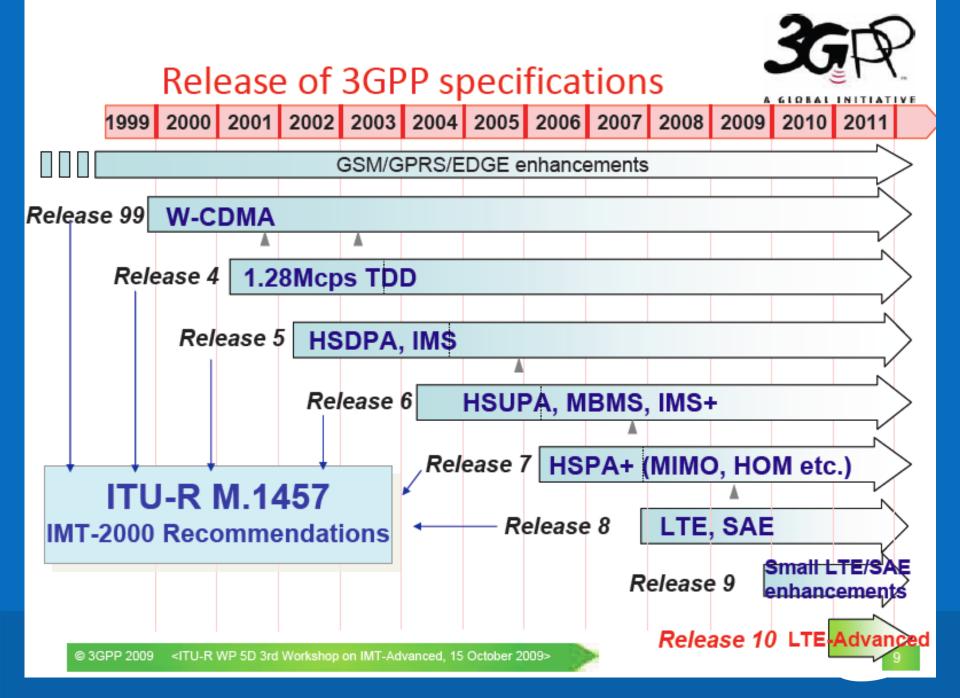
 Cost of Network deployments to meet demand is increasing faster than revenue

4G networks needed to lower Cost per Bit, and enable new Services

Outline

- Motivation for 4G
- Overview and status of 4G
 - 3GPP LTE
 - IEEE 802.16/WiMAX
- Advances in 4G Technologies
- Future Research Directions

Evolution of 4G


Current 4G standards: Part of IMT-2000

- WiMAX (based on IEEE 802.16e)
- LTE (Rel. 8)

4G+ candidates: Part of IMT-Advanced

- WiMAX2 (based on IEEE 802.16m)
- LTE-A (Rel. 10)

Requirements of 3GPP LTE-Advanced/IEEE 802.16m

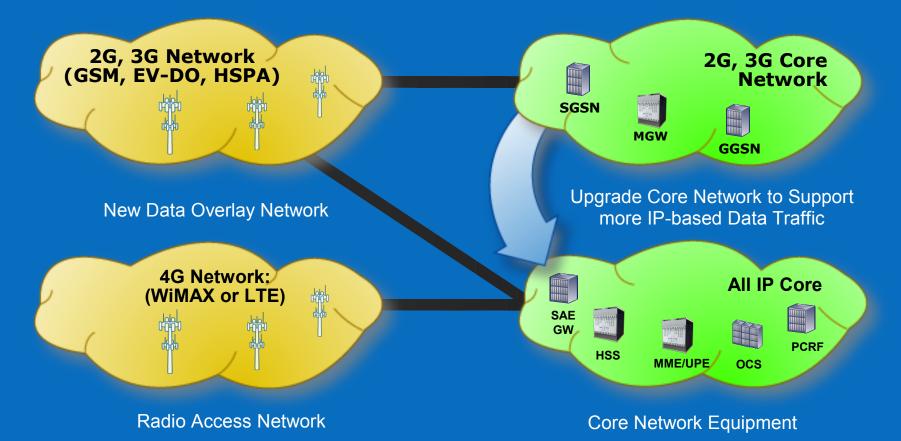
Requirements	IMT-Advanced	IEEE 802.16m	3GPP LTE-Advanced
Peak spectrum efficiency (bit/sec/Hz) (system-level)	DL: 15 (4x4) UL: 6.75 (2x4)	DL: 8.0/15.0 (2x2/4x4) UL: 2.8/6.75 (1x2/2x4)	DL: 30 (8x8) UL: 15 (4x4)
Cell spectral efficiency (bit/sec/Hz/sector) (system-level)	DL: (4x2) = 2.2 UL: (2x4) = 1.4 (Base coverage urban)	DL: (2x2) = 2.6 UL: (1x2) = 1.3 (Mixed Mobility)	DL: (4x2) = 2.6 UL: (2x4) = 2.0
Cell-edge user spectral efficiency (bit/sec/Hz) (system-level)	DL: (4x2) = 0.06 UL: (2x4) = 0.03 (Base coverage urban)	DL: (2x2) = 0.09 UL: (1x2) = 0.05 (Mixed Mobility)	DL: (4x2) = 0.09 UL: (2x4) = 0.07 (Base coverage urban)
Latency	C-plane: 100 msec (idle to active) U-plane: 10 msec	C-plane: 100 msec (idle to active) U-plane: 10 msec	C-plane: 50 msec (idle/camped state to connected) 10 msec (dormant state to active state) U-plane: 10 msec
Mobility bit/sec/Hz at km/h (link-level)	0.55 at 120 km/h 0.25 at 350 km/h	Optimal performance up to 10 km/h Graceful: degradation up to 120 km/h Connectivity up to 350 km/h Up to 500 km/h depending on operating frequency	Optimal performance up to 10 km/h Up to 500 km/h depending on operating frequency
Handover interruption time (msec)	Intra frequency: 27.5 Inter frequency: 40 (in a band) 60 (between bands)		Not specified

3GPP LTE Key Features

High spectral efficiency

- OFDM in Downlink
- Single-Carrier FDMA in the Uplink
- Multi-antenna application

✓ Very low latency


- Short setup time and Short transfer delay
- Short HO latency and interruption time
 - Short TTI
 - RRC procedure
 - Simple RRC states

✓ Support of variable bandwidth

- 1.4, 3, 5, 10, 15 and 20 MHz
- Simple Architecture, protocol architecture
- \checkmark FDD and TDD within a single radio access technology

Network Upgrade to Support 4G

Mobile WiMAX and 3GPP LTE require new Radio Access Networks and devices. Neither is "backward compatible" to 3G unless user has a dual mode device.

Outline

- Motivation for 4G
- Overview and status of 4G
 - 3GPP LTE
 - IEEE 802.16/WiMAX
- Advances in 4G Technologies
- Future Research Directions

Status of IEEE 802.16m/WiMAX

- ➢ Mobile WiMAX: Rel 1.0 (802.16e) → Rel 1.5 → Rel 2.0 (802.16m)
- IEEE 802.16 Task Group m (TGm) is developing an 802.16 amendment (802.16m) which provides performance improvements.
- Meet/Exceed IMT-Advanced requirements for next generation mobile networks.
- The 802.16m spec is currently at sponsor ballot stage and was recently approved to be included in the family of IMT-Advanced.

Mobile WiMAX RoadmapRel 1.0
802.16e-2005Rel 1.5
802.16e Rev 2Rel 2.0
802.16m

Outline

- Motivation for 4G
- Overview and status of 4G
- Advances in 4G Technologies
- Future Research Directions

Advanced MAC Features in 3GPP LTE-A

• Relay

support multi-hop relay mechanisms

Carrier Aggregation (CA)

 enables a common MAC entity to control a PHY spanning over multiple frequency channels with different bandwidths

Multi-Radio Coexistence

supports concurrent operations of LTE-A and other collocated radios

Fast Dormancy - Power Saving Mechanisms

Quick switch to low power state

Self Organization

- supports self configuration and self optimization mechanisms

Improved QoS Mechanisms

- To support variable rate coders over best effort when bandwidth available
- Machine Type Communication
 - Basic features
- GPS assisted Location Based Services

Advanced MAC Features in IEEE 802.16m

• Relay

- support multi-hop relay mechanisms.
- Multi-carrier (MC)
 - enables a common MAC entity to control a PHY spanning over multiple frequency channels with different bandwidths

Multi-Radio Coexistence

- supports concurrent operations of IEEE 802.16m and other collocated radios

Interference Management

- manage the inter-cell/sector interference.

Group Resource Allocation

- Decrease overhead, and increase capacity for VoIP

Self Organization

- supports self configuration and self optimization mechanisms

Improved Power Saving Mechanisms

- Idle and Sleep modes

Improved QoS Mechanisms

Adaptive polling and granting mechanism

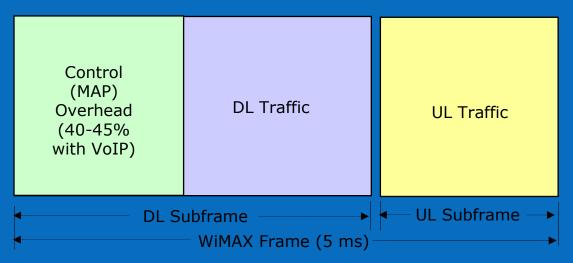
GPS assisted Location Based Service

Deep Dive on one Feature: -Group Resource Allocation in 16m

Why VoIP over 4G/WiMAX?

- Real-time services will be an essential component of 4G/WiMAX networks.
 - Voice is still a major revenue source for operators.
- WiMAX networks are well-known for high packetdata efficiency, but not for voice efficiency.
 - Hence, efficient support of voice over WiMAX is needed.

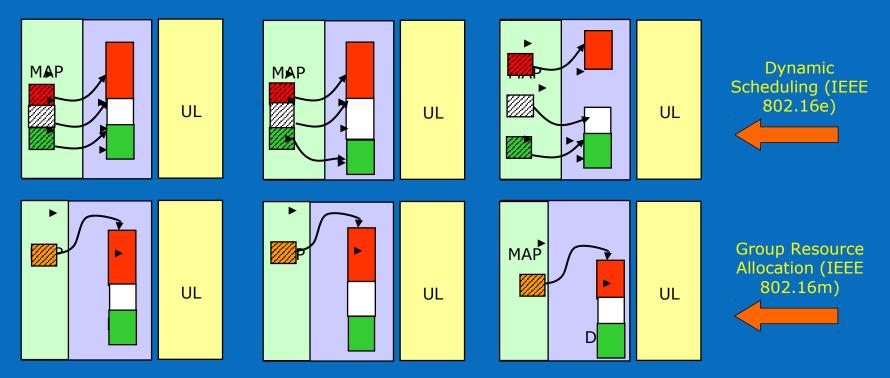
VoIP is an Essential Component of 4G/WiMAX


Challenge: Large Control Overhead

WiMAX Control (MAP) overhead \rightarrow Proportional to number of users scheduled

VoIP traffic \rightarrow Small packets \rightarrow More users in frame as compared to data traffic

Thus, large control overhead with VoIP traffic


Up to 40 – 45% of DL subframe

High Control Overhead Results in Low User Capacity

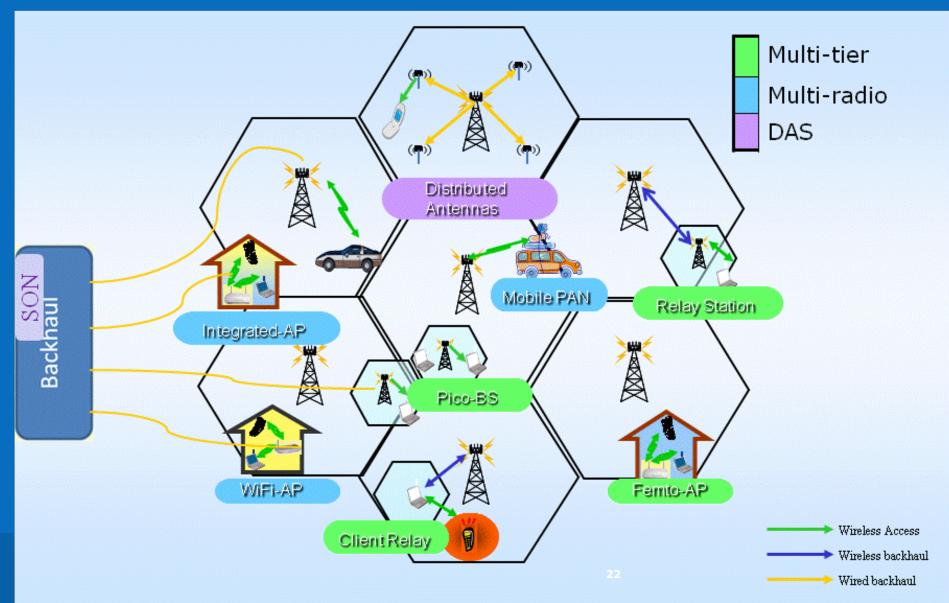
Group Resource Allocation

Users are provided allocations together as a group Allocation parameters are signaled as small bitmaps saving overhead

> Group Resource Allocation Increases WiMAX VoIP Capacity by 40%

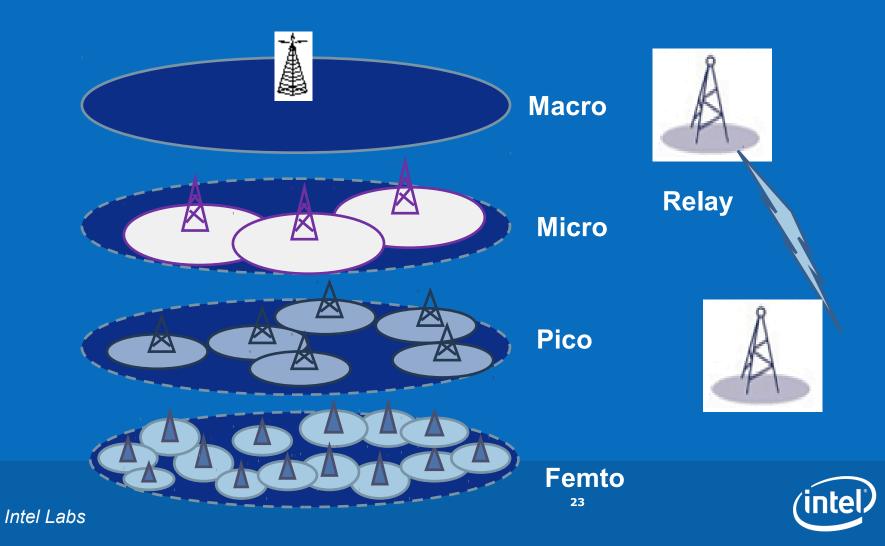
Outline

- Motivation for 4G
- Overview and status of 4G
- Advances in 4G Technologies
- Future Research Directions



Few Research Directions

- Future Access Networks and Challenges
 - Vision of Advanced Access Networks
 - Multi-tier Networks
 - Interference Mitigation/Alignment
 - Multi-Radio Scenarios
 - Mobility and Network Management
- Enhancing Quality of Experience (QoE)
- Machine Type Communications
- Environment-Friendly Green Radios



Vision of Advanced Access Network Architecture

Multi-tier Networks Aggressive Spectrum Utilization

• Overlay multiple tiers of cells, macro/pico/femto, potentially sharing common spectrum

Interference Alignment

Problem

• Inter-Tier Interference is a Challenge. Example: Femto-cells interfere with macro-users and other femto-cells

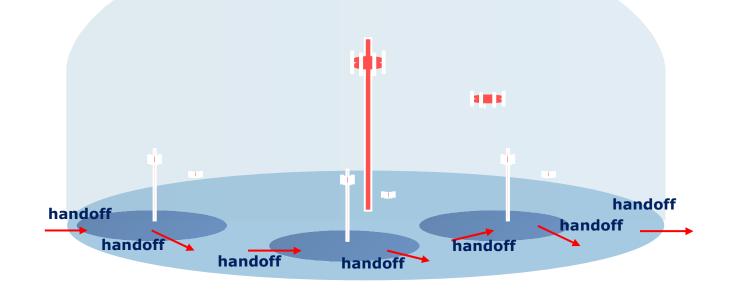
<u>Idea</u>

• Align transmit directions so that interfering signals all come from the same "direction". Alignment can be across antennas, frequency, time.

Benefits:

• Improves uplink and downlink transmissions of cell-edge users;

Challenge:


• Practical schemes that can achieve theoretical gain

Mobility & Network Management is a Challenge

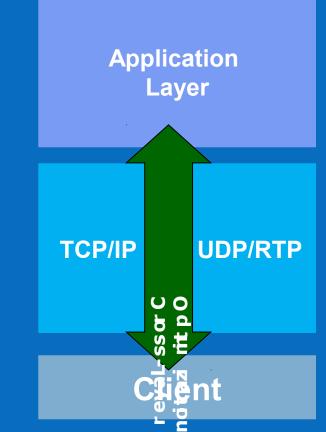
Intelligent Handoffs

• Efficient handover mechanisms required to avoid frequent handoff between small cells

Multi-Radio Scenarios

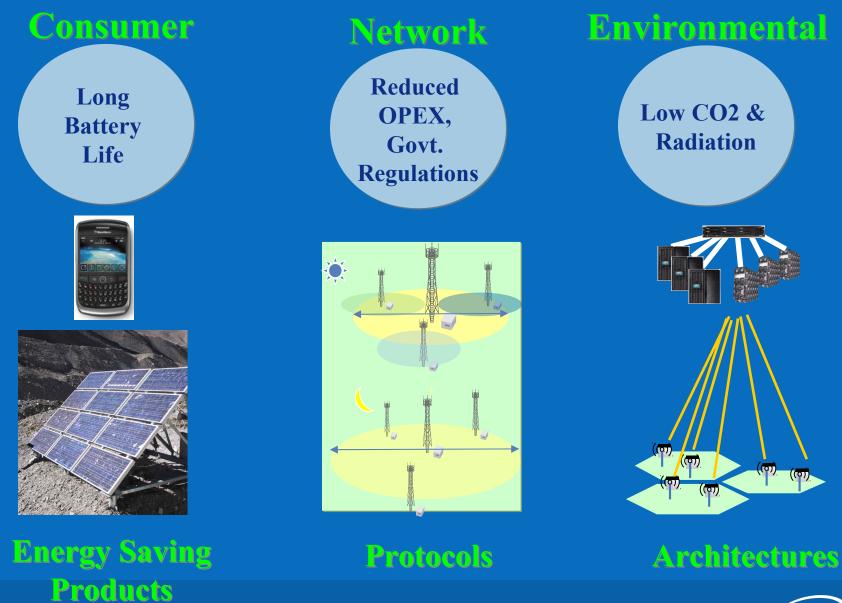
Enhancing QoE

• Many Devices/Applications Require Enhanced QoE


 Expect large number of heterogeneous mobile internet devices with various applications requiring a range of quality of experience (QoE) metrics

• Limitations of Today's QoS Approach

- Not straightforward to map today's QoS parameters to user experience
- Lack of cost effective solutions for current/future Internet Apps


Cross-layer awareness to provide the desired QoE enhancements

- QoE-aware link adaptation and resource allocation
- Intra-flow and inter-flow prioritization at device/network levels
- Link-aware application adaptation for better QoE and capacity enhancements

Environment-friendly Green Radios

Summary and Final Remarks

Mobile Broadband capabilities has grown significantly in the past

• Demand increases in a faster scale with the innovations in Internet, applications and devices

• Research and innovations are crucial to satisfy the growing demand

